
Python
Programming

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Variables
• If-Else-Elif (Conditions)
• Arrays
• For Loops
• While Loops
• Create Functions

Contents

• If you are familiar with one or more other
programming language, these features
should be familiar and known to you.

• All programming languages have these
features built-in

• But the syntax is slightly different from one
language to another

• Python IDLE
• Spyder (Anaconda distribution)
• PyCharm
• Visual Studio Code
• Visual Studio
• Jupyter Notebook
• …

Python Editors

Spyder (Anaconda distribution)

Code Editor window

Console window

Variable Explorer window

Run Program button

https://www.anaconda.com

https://www.anaconda.com/

• We use the basic IDLE editor or another Python
Editor like Spyder (included with Anaconda
distribution) or Visual Studio Code, etc.

Basic Python Program

print("Hello World!")

Variables in Python
> x = 3
> x
3

Creating variables: We can use variables in a calculation like this:
> x = 3
> y = 3*x
> print(y)

We can implement the formula
𝑦(𝑥) = 𝑎𝑥 + 𝑏 like this:

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

𝑦(𝑥) = 2𝑥 + 4

A variable can have a short name (like x and y) or a more descriptive name (sum, amount, etc).
You don need to define the variables before you use them (like you need to to in, e.g., C/C++/C).

Calculations in Python

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

> x = 5
> y = a*x + b
> print(y)

We can use variables in a calculation like this:
𝑦(𝑥) = 2𝑥 + 4

𝑦(3) = ?

𝑦(5) = ?

𝑦(𝑥) = 𝑎𝑥 + 𝑏

Conditions

a == b # Equals
a != b # Not Equals
a < b # Less than
a <= b # Less than or equal to
a > b # Greater than
a >= b # Greater than or equal to

We have the following Conditions we can use in Python:

• In Python you use one of the following or a
combination of those:
• If
• If Else
• Elif (known as “Else If“ in most other

programming languages)

If – Else - Elif (Conditions)

If
a = 5
b = 8

if a > b:
print("a is greater than b")

if b > a:
print("b is greater than a")

if a == b:
print("a is equal to b")

Note! Python uses
indentation (spaces)

Other Programming
Languages uses curly
brackets {} or Begin .. End

Note also the colon (:)

Try to change the values for the variables a and b

If - Else

a = 5
b = 8

if a > b:
print("a is greater than b")

else:
print("b is greater than a or a and b are equal")

If you have 2 conditions that you need to check, you can use If – Else:

Elif

a = 5
b = 8

if a > b:
print("a is greater than b")

elif b > a:
print("b is greater than a")

elif a == b:
print("a is equal to b")

Note! Python uses "elif" not
"elseif" like many other
programming languages do

If you have more than 2 different conditions you need to check, you typically use Elif:

If need, you can also add an Else at the end for handling “all other conditions”

Arrays
An array is a special variable, which can hold more than one value at a time

Python does not have built-in support for Arrays, but Python Lists can be used instead.

data = [1.6, 3.4, 5.5, 9.4]

For more advanced use of Arrays in Python you will have to import a library, like the NumPy library.

N = len(data)

Length of an Array (List):
x = data[2]

Get a specific element (Indexing):

data[2] = 7.3
Change a specific element:

data.append(11.4)

Add a new value to the end of the Array (List):

Example:

Using Arrays in Functions

from statistics import *

data = [1.6, 3.4, 5.5, 9.4]

m = mean(data)
sd = stdev(data)
datamin = min(data)
datamax = max(data)

Example:

Note! statistics is a sub library in the Python Standard Library

Using Arrays in Functions

Arrays of Strings
cars = ["Ford", ”Toyota", ”Tesla"]

You can also create an Array (List) of Strings:

x = cars[1]

x = len(cars)

cars.append(”Porche")

cars.remove(”Tesla")

cars.sort()

Some useful Functions for manipulating the Array (List):

For Loops
A For loop is used for iterating over a sequence. I guess all your programs will use
one or more For loops. So if you have not used For loops before, make sure to learn
it now.

cars = ["Ford", "Toyota", "Tesla"]

for car in cars:
print(car)

Note! Python uses
indentation (spaces)

Other Programming
Languages uses curly
brackets {} or Begin .. End

Example:

data = [1.6, 3.4, 5.5, 9.4]

for x in data:
print (x)

Example:

Array (List)
of Strings

Array (List)
of Numbers

For Loops
The range() function is handy to use in For Loops:
N = 10

for x in range(N):
print(x)

The range() function returns a
sequence of numbers, starting
from 0 by default, and increments
by 1 (by default), and ends at a
specified number.

You can also use the range() function like this:
start = 4
stop= 12 #but not including

for x in range(start, stop):
print(x)

Or like this:

start = 4
stop = 12 #but not including
step = 2

for x in range(start, stop, step):
print(x)

For Loops - Example
Example: Find the Sum and Average/Mean for some given Data:

data = [1, 5, 6, 3, 12, 3]

sum = 0

for x in data:
sum = sum + x

print(sum)

N = len(data)
mean = sum/N
print(mean)

Result:
30
5.0

While Loops
Example: We want to find for what value of x the function has its minimum value

The minimum of the function

(−5, −72)

We can of course find the derivative of the
function and find where the derivative is equal
to zero:

𝑦 𝑥 = 2𝑥! + 20𝑥 − 22

𝑑𝑦
𝑑𝑥

= 4𝑥 + 20 = 0

𝑥/01 = −5
𝑦 −5 = 50 − 100 − 22 = −72

This gives:

While Loops
Example: We want to find for what value
of x the function has its minimum value

Python Solution:

𝑦 𝑥 = 2𝑥! + 20𝑥 − 22

import numpy as np
import matplotlib.pyplot as plt

xstart = -20
xstop = 20
increment = 0.1
x = np.arange(xstart,xstop,increment)
y = 2 * x*x + 20 * x - 22

plt.plot(x,y)
plt.grid()

i = 0

while y[i] > y[i+1]:
i = i+1

print(x[i])
print(y[i])(−5, −72)

The Python results becomes the
same as the analytical solution:

We use Python to iterate through all
values of 𝑦(𝑥) using a While Loop.
Inside the While Loop we compare 𝑦(𝑖)
and 𝑦(𝑖 + 1). If 𝑦 𝑖 + 1 is larger than
𝑦(𝑖) we have found the minimum.

Create Functions
• So far, we have used many of the built-in functions in

Python, like print(), plot(), len(), etc.
• There are many built-in functions in Python
• We can also use functions which are part of many of

the additional Python Libraries like NumPy,
Matplotlib, etc.

• Still, very often we need to make our own functions
from scratch

Function Definition

def FunctionName:
<statement-1>
.
.
<statement-N>
return ...

Note! Python uses
indentation (spaces)

Other Programming
Languages uses curly
brackets {} or Begin .. End

Note that you need to use a colon ":" at the
end of line where you define the function.

The return value should be stated here

Create Functions
def add(x,y):

z = x + y
return z

Create the Function:

def add(x,y):
z = x + y
return z

Using the Function:
x = 2
y = 5

z = add(x,y)

print(z)

Using the Function within the same script:

Create Functions in a Separate File
• Although you can mix functions and code in one file, it is much

better to create the functions in separate .py files
• In that way you can easily reuse the function in different Python

scripts

We start by creating a separate
Python File, e.g., “myfunctions.py“
for the function:

def average(x,y):

return (x + y)/2

myfunctions.py:

Next, we create a new Python File (e.g., “testaverage.py“)
where we use the function we created:1

2

from myfunctions import average

a = 2
b = 3

c = average(a,b)

print(c)

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

